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Angularly Correlated Two-Electron Repulsion Operators* 
I. One- and Two-Center Integrals 
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The Bohr model for two-electron atoms is modified to include angular correlation effects in an 
empirical fashion. An extension of the model to two-centers is given. Simple expressions for one- and 
two-center Coulomb repulsion integrals are derived and compared with semi-empirical approxima- 
tions. 

Die Bohrsche Modellvorstellung fiir ein Atom mit zwei Elektronen wird so modifiziert, dab die 
Winkelkorrelation empirisch beriicksichtigt wird. Die Erweiterung dieses Modells auf zwei Zentren 
wird angegeben. Einfache Ausdriicke ftir Ein- und Zweizentren-Coulombintegrale werden abgeleitet 
und mit semiempirischen N~iherungen verglichen. 

Introduction 

In a previous paper in this journal [1] one of us (AFS) proposed a simple 
electrostatic model to be used in approximating one-center electron repulsion 
integrals. The technique in that paper was to replace the repulsion operator, r(~, 
in the integrand by the operator (rl~ + r2~) -1 1. Since then this model has been 
extended [2] to include two-center Coulomb integrals by using (rl~ + r2p + R)-1 
as the repulsion operator. The repulsion energies calculated using these prescrip- 
tions have been found to be somewhat lower than semi-empirical values. 

The rationale for choosing these operators is that since wave functions con- 
structed from a basis set of one-electron atomic-orbitals cannot include electron- 
correlation effects then perhaps they can be included, in some average fashion, 
in the repulsion operator. For the one-center operator above, this correlation 
effect is present as a constraint requiring the electrons to be 180 ~ apart with 
respect to the orbital center. In this paper we assume that the low values of the 
resulting electron repulsion energies are due to an over-estimation of the angular 
correlation and an appropriate correction term is applied. 

* Based on a thesis submitted by RWS to the State University of New York at Albany in partial 
fulfillment of the requirements for the degree of Ph.D. 

** Present address: Department of Chemistry, University of Virginia, Charlottesville, Va. 22901. 
�9 Greek subscripts refer to nuclei while numerical subscripts refer to electrons. R is an inter- 

nuclear distance whereas r is either an electron-electron or an electron-nuclear distance. The units 
are in atomic units (a.u.) where 1 a.u. of energy = 27.2 eV). 
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The Electron Repulsion Operators 

The distance between two electrons in concentric orbits is given by the Law 
of Cosines as 

r t 2  ---= [r12~ q- r2~ - -  2 r 1 , r 2 =  c o s 0 ]  =* , (1) 

where 0 is the minimum angle made by r,~ and r2~. The repulsion operator may 
be obtained from the above expression as 

( 2 n -  1)!1 [r,~r2=(1 + cos0)]" 
ri  -1 = % ~ + r2=)- 1 + 

n = 1 n ! ( r l  ~t q- r2~) 2n + 1 (2) 

Truncation of the right hand side of Eq. (2) after the first term (equivalent to 
setting 0 = re) yields the simple electrostatic model discussed earlier. By fixing 0 
at some average angle, additional terms may be included in the repulsion operator 
which correspond to a decrease in the average angular correlation. A three term 
expression for r12* appears to be sufficient for one-center repulsion integrals while 
only two terms are required for two-center Coulomb integrals. For one-center 
integrals the repulsion operator is taken to be 

r~zl=(rt~+r2~)-l  +~rl~r2~(rl~+r2~)-3 + 3(~rl~r2~)2(rl~+r2~) -s  , (3) 

where { - 1 + cos 0. 
In addition to overestimating the angular correlation, the two-center operator 

( r l = q - r 2 = - 4 - R )  - 1  also overestimates the interelectronic distance except when the 
electrons lie on the locus of the internuclear axis. When R is on the order of a bond 
length there may be considerable electron density between the nuclei and r12 
would be grossly overestimated by using this operator. 

A logical extension of the present one-center model to the two-center case 
would be to require the two electrons to always be on opposite sides of some 
point on the internuclear axis. We have chosen the location of this point to be 
a distance 

<r>,  
R ~ -  <r)~+(r>~ R (4) 

from c~ on the internuclear axis. This point is the center-of-charge for the cor- 
responding Bohr orbitals. Here (r)~ is the expectation of r for the atomic orbital 
centered on e. For Slater Type Orbitals (STO), 

Z = [(2{)2"+t/(2n)!] ~ rn-1 e-r Ylm(O, C~), (5) 

this expectation value is simply 
2n+ 1 

( r ) =  2-~-- (6) 

In order to simplify the mathematics and to provide for adjustment of the two- 
center repulsion operator we have decided to use Coulson's operator with the 
inclusion of a damping factor; 

rl-~ = (q= + r2~ + 2R) -1 . 
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For the reasons mentioned above, we desire that 2 be small when R is on the order 
of a bond length and that 2 approach unity as R tends to infinity. The correlation 
effect is expected to vary as the two-center overlap and since overlaps fall off 
exponentially with distance, an exponential form for the damping factor was 
chosen. Because the overlap depends on the size of the orbitals as well as the 
distance between then, we have picked as the exponent in the damping factor 
the ratio 

<r>= = <r>B (7) 
Q = R, Rp 

The distance between the two electrons for the two-center distribution is then 

r12 = rl~ q- r2/~ q- e -~~ R (s) 
= (ra~ + e -~~ R=) + (r2e --}- e -~~ R,) .  

The terms in parenthesis in the right hand side of Eq. (8) are interpreted as average 
values of the distances from the charge-center to the respective electrons. 

At present there are two widely used semi-empirical methods for determining 
two-center Coulomb integrals. The Mataga-Nishimoto [3] (MN) approximation 
has been found to be preferable for calculating singlet state energies while the 
method of Ohno [4] works best for triplet states [5]. Coulomb integrals calculated 
using Ohno's formula are larger than those computed by the MN expression. The 
theoretical explanation for the superiority of Ohno's formula for calculating 
triplet energies is that the Pauli Principle is operating to keep the electrons apart. 
By empirically assigning values of 7 for singlet and triplet states, the present model 
will encompass both of these semi-emirical methods. 

As would be expected, the angular correction term for two-center integrals is 
much smaller than that for one-center integrals. The two-center repulsion operator 
is then approximated by the first two terms of an expansion similar to Eq. (2), i.e., 

r121 ~ -  (rl= + tie -+- e-P~ R) -1 + (r,= + e-~~ R) (r2~ q- e-~~ R) (rl= + r2e + e-~~ R) -  3 . (9) 

We arbitrarily assume that 0 approaches = as R tends to infinity according to 

0 = 0 ~ + (= - 0 ~ e -~~ , (10) 

where 0 ~ is the appropriate one-center angle. 

Evaluation of the Repulsion Integrals 

The electron repulsion integrals are given below for Slater-type atomic orbitals. 
The requisite integrations are expedited by means of the Laplace transtbrm 

oO 

1 1 ~ x . e _ X r d x  (11) 
y.+l = n~ o 

as suggested by Coulson [2]. 
The most general one-center electron repulsion integral over STO's is 

(al a21~3 a,) = ~ I Z* (1) Z2(1) ~i-21%*(2) %4(2) dv 1 dv 2 , (12) 
Vl 92 

where ~-~ is given by the right hand side of Eq. (3) and the subscripts denote 
possibly different orbitals on the same center. Utilizing Eq. (11) and the binomial 
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expansion 

(x - c ) - "  = 
k=0 

the integral in Eq. (12) becomes 

((Z 10~2[(X3tX4) = N' (nl + n2)!(n3 q- n4)! 
((~ + (2)",+"2 +"~+",+~ 

(n - 1 + k) ! c k 

( n - 1 ) ! k !  x "+k 

t 1 ~3+~4 pn3+n4+l 
m=O (1 -]- ~2 - m 

(13) 

�9 { A l + ~ ( n l + n z + 1 ) ( n 3 + n 4 + 1 + m ) [ A 1 - 2 A z + A 3 ]  
~a (14) 

+ ~ - ~ ( n l + n 2 + 2 ) ( n l + n 2 + l ) ( n 3 + n 4 + l + m ) ( n 3 + n 4 + l + m )  

[A 1 - 4A 2 + 6A 3 - 4Ar + As] / , 
J 

where N' = N 1 N2N3 N4, 

( n -  1 + m)! (15) 
G -  ( n - 1 ) ! m !  ' 

and Ak = (nl + n2 + n3 + n4 + k + m)- 1. In the preceeding it has been assumed that 
(al a21~3 ~4) is not zero owing to the orthogonality of the spherical harmonics. 

For  Zl = Z2 = Z3 = Z4 Eq. (14) is simplified to 

n = 1, (~:r I 0~) = (0.4000 + 0.0857 r + 0.0286r 2) 

n = 2, (0~ ] 0~) = (0.2222 + 0.0505r + 0.017542) ~ (16) 

n = 3, (~0~l a~ ) = (0.1538 + 0.03594 + 0.0127r 2) ~. 

Using the repulsion operator given in Eq. (9), the two-center Coulomb integral 
is computed in similar fashion as 

(~l~ ((l(nl +n2)! (n3 + n 4 ) ! +  ~2) nl+n2+n3+n4+l ~ [1 ~ 3 + ( 4 ] m p  na+n'+l 

�9 F 2 + ~ - ( n  l + n  2+1 ) (n  3 + n  4 + l + m ) [ F  2 - 2 F  3 +F 4 ]  

(17) 

+ 2 2(~1 - ~2) [R~(n3 + n4 + 1 + m) + R~(n 1 + n 2 + 1)] 

[F  1 - 2F 2 + F3] 

+ ~2 (~-(~1 "~-~2)) 2 R, R a [ F o - 2 F  , + F2]}, 

where 2 = e -~~ 

F k =- e zn(~'+ r E., +.~+.~+.,+k+,.(2R(( 1 + ~2)), (18) 

and E.(x) is the well-known exponential integral [-6] 

co 
E.(x) - ~ t-" e -~' dr. (19) 

1 
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4 A. Coulson- S t, 
L~ B. This work, 7=0.11 

C. Mntega - Nishimoto 
2 D. This work, ), =0.82 

E. Ohno 

I I I 
1.0 2.0 5.0 

Internucleor distance in otornic units 

Fig. 1. (~l f l f l )  for carbon as a function of internuclear distance 

For •1 = )~2 = X3 "~" Z4 and n = 2, Eq. (17) reduces to 

[25(E~o_ 2E 1 +E12) (c~[/~/~) = 2~ e zCR Elo + -~ 1 

(20) 
+ 10~2R(E9 - 2Elo + Ell) + (2~R) 2 (Es - 2E9 + E~0)] / , 

where E, -= E,(2~2R). A plot of the right hand side of Eq. (20) against R is shown 
in Fig. 1 for two different values of 2. 

Results and Discussion 

According to Pariser [7], experimental values of one-center electron repulsion 
integrals may be approximated as the difference between the ionization potential 
and the electron affinity of a particular valence state. Using these values for (ee/c~e) 
and orbital exponents from Clementi's [-8] SCF procedure, values of the angular 
correlation parameter, 0, may be computed by means of Eq. (12). These values 
are given in the Table for ls, 2s, 2p, and 3s atomic orbitals. 

In the series ls ~ 2s ~ 3s a decrease in 0 would be expected owing to an increase 
in the size of the orbital. Comparison of s orbitals with p orbitals should show 
a larger value of 0 for the latter due to the spatial orientation of p orbitals. Both 
of these trends are borne out by the data in the Table. An angle of 90 ~ would 
correspond to no correlation of the electron pair and angles less than 90 ~ have 
no physical basis. Indeed we found some angles slightly less than 90 ~ but these 
occurred for orbitals with n __> 4 and particularly with inner orbitals of these large 
atoms. The explanation for this behavior is simply that the ionization potentials 
and electron affinities are less well-known in these cases. 
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Atom Orbital ~" I - A(eV) b 0(~ 

H ls 1.0000 12.85 c 108 

Li 2s 0.6396 4.71 105 

B 2p 1.2107 8.95 c 103 
C 2p 1.5679 10.6& 122 
N 2p 1.9170 13.04 122 
O 2/) 2.2266 14.93 126 
F 2p 2.5500 17.35 121 

Na 3s 0.8358 4.54 93 

a Ref. I8]. 
b Average values from Ref. [10] and Ref. I-9] except where noted. 
c Ref. [10]. 

Values of some two-center Coulomb integrals are compared in Fig. 1. For the 
case of carbon 2p~ atomic orbitals, the present model with 7 = 0.11 agrees almost 
exactly with the MN formula while good agreement with Ohno's semi-empirical 
expression is obtained by setting 7 = 0.82. 

Conclusion 

Electron correlation has been used as a rationale for constructing electron 
operators which yield results that agree with semi-empirical calculations. The 
extension of this method to multi-center electron repulsion integrals and the 
treatment of some representative systems will be given in later papers. 

We note that since the repulsion operators contain only radial terms, the 
repulsion integrals have the rotational invariance [11] necessary for application 
of the ZDO approximation to systems transcending the r~-electron approximation. 
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